

"Determination of enantiomeric excess with Evaporative Light Scattering Detectors (ELSD):

Why racemic mixtures do not show a 50:50 ratio"

T. Zhang, D. Nguyen, P. Franco

www.chiral.fr

Overview

- Introduction: need for Evaporative Light Scattering
 Detection (ELSD) in the separation of enantiomers
- Principles of ELSD for quantification of enantiomers
- Practical examples of quantification on
 - ⇒ CHIRALPAK® IA
 - ⇒ CHIRALPAK® IB
 - ⇒ CHIRALPAK® QD-AX

Need for ELSD

The immobilized polysaccharide-derived chiral stationary phases

CHIRALPAK® IA

$\begin{bmatrix} OR & H & CH_3 \\ OR & OR & CH_3 \end{bmatrix}$

CHIRALPAK® IB

- Based on amylose and cellulose *tris*-(3,5-dimethylphenylcarbamate)
- Immobilization onto 5 µm silica gel by a proprietary process

REVOLUTIONARY generation of CSPs

Need for ELSD

- Compatible with all solvents
- New selectivity profile
- Robustness
- Extented durability

Normal phase conditions:

Alkane/alcohol

Polar mode:

- Acetonitrile
- Ethanol
- Methanol
- Other alcohols

Extended solvent range: MtBE Toluene Choroform Dichloromethane Ethyl acetate THF 1,4-dioxane Acetone DMSO or DMF (as injection solvents)

Need for ELSD

Drug Analysis 2006

UV cut-off of common HPLC solvents

Feasibility of UV detection

Solvent	UV cut-off (nm)	UV detection feasibility
Hexane	195	Good
2-Propanol	205	Good
Ethanol	205	Good
Methanol	205	Good
Acetonitrile	190	Good
Dichloromethane	233	Troublesome *
Chloroform	245	Troublesome *
Ethyl acetate	256	Troublesome *
Acetone	330	Failure
Toluene	284	Failure

 $^{^{*}}$ but still possible with compounds which are chromophoric at λ max > 250 nm

Detection of molecules with low absorbing chromophores Example acetyl-D,L-Leu

CHIRALPAK® QD-AX methanol / formic acid

F = 1 mL/min, 25°C (Column 15 x 0.46 cm)

Advantages of ELSD detection

- Compatible with all organic solvents
- Able to detect analytes which do not bear strong UV absorbing groups (i.e. Boc- or Ac-derived amino acids)
- Produces stable baselines during gradient chromatographic elution regardless of the spectral properties of the different mobile phases
- Adapted for the analysis of fatty acids, glycerides, lipids, surfactants and pharmaceuticals ...

Rare applications in enantiomeric resolution until present!!

Basic principle of ELSD

- ELSD is based on the differences in volatility between the mobile phase and the analyte molecules in the outlet stream
- It operates by:
 - nebulizing the effluent coming out of the column
 - vaporizing the solvent in the formed droplets through a heated drift tube
 - leaving behind the non-volatile solute particles, which are carried through a beam of light
- The incident light is scattered by the particles and collected by a photomutitplier

- The response does not follow Beer's Law.
- Instead, the measured peak area (A) is related to the sample mass (m):

$$A = a m^b$$

$$Log A = log a + b log m$$

(exponential relationship between the peak area and the sample mass)

Coefficients a and b are related to the nature of solute, droplet size, concentration, mobile phase compositions, ...

ELSD versus UV detection

Solvents with high UV cut-off

Better signal-to-noise ratio

CHIRALPAK® IB

n-hexane / ethyl acetate / TFA 70/30/0.1

 $F = 1 \text{ mL/min}, 25^{\circ}\text{C}$ (Column 25 x 0.46 cm)

ELSD *versus* UV detection

Solvents with high UV cut-off

Higher resolution values

CHIRALPAK® IB

n-hexane / ethanol / TFA 90/10/0.1

 $F = 1 \text{ mL/min}, 25^{\circ}\text{C}$ (Column 25 x 0.46 cm)

Differences in peak shape

between ELSD and UV detection

- Due to the exponential correlation between the ELSD response and the sample mass
- ⇒ the instant response intensity at the maximum is significantly « amplified »
- ⇒ while the response for the very low sample mass points at the « foot » of the peak are « shaved »

⇒ ⇒ HIGHER EFFICIENCY

Deviation of peak area by ELSD

Example ELSD versus UV detection

Racemic mixture!!

CHIRALPAK® IA ethyl acetate 100%

 $F = 1 \text{ mL/min}, 25^{\circ}\text{C}$ (Column 25 x 0.46 cm)

Deviation of peak area by ELSD

Correlation areas both enantiomers

CHIRALPAK® IA ethyl acetate 100%

F = 1 mL/min, 25°C (Column 25 x 0.46 cm)

Variation of peak area percentage by ELSD

Influence of peak interval

CHIRALPAK® IA

toluene / methanol / DEA 90/10/0.1

toluene / methanol / DEA 98/2/0.1

F = 1 mL/min, 25°C (Column 25 x 0.46 cm)

Variation of peak area percentage by ELSD

Influence of peak width

CHIRALPAK® IB

n-hexane / chloroform / acidic addtive 50/50/0.1

F = 1 mL/min, 25°C (Column 25 x 0.46 cm)

Variation of peak area percentage by ELSD

Influence of MW of the compound

Calibration curve for quantification by ELSD

Separation of amino acid derivative - 1

N-CBZ-D,L-Phe

CHIRALPAK® QD-AX

methanol / formic acid 100/0.3

 $F = 1 \text{ mL/min}, 25^{\circ}\text{C}$ (Column 15 x 0.46 cm)

Enriched s Rac:L	samples V _{rac} :V _L		UV 254 nm			ELSD		
(mg/ml)	(µI)	A_1	A_2	A ₁ %	A_1	A_2	A ₁ %	
2:1	10:0	513.9	501.9	50.6	7897.8	6851.9	53.5	→ racemate
2:1	3:12	814.7	148.7	84.6	14685.3	973.4	93.8	
2:1	5:10	793.2	254.9	75.7	14038.7	2180.9	86.6	

Calibration curve for quantification by ELSD

Separation of amino acid derivative - 2

Enriched s Rac:L	samples V _{rac} :V _L		UV 254 nm			ELSD		
(mg/ml)	(µI)	A_1	A_2	A ₁ %	A_1	A_2	A ₁ %	_
2:1	10:0	513.9	501.9	50.6	7897.8	6851.9	53.5	> racemate
2:1	3:12	814.7	148.7	84.6	14685.3	973.4	93.8	
2:1	5:10	793.2	254.9	75.7	14038.7	2180.9	86.6	

Apparent » values directly calculated with the ELSD detection

Percentages calculated with the ELSD areas in the calibration curves

50.2% 83.9% 75.2%

N-CBZ-D,L-Phe
CHIRALPAK® QD-AX
methanol / formic acid

Conclusions

➤ T. Zhang et al., J. Separation Sci. 29 (2006) 1517

- Evaporative Light Scattering Detectors (ELSD) are useful tools for the qualitative and quantitative analysis of enantiomeric mixtures
- High versatility for their use with CHIRALPAK® IA and CHIRALPAK® IB with UV-absorbing mobile phases
- Well adapted for the detection of non-UV absorbing molecules on use with CHIRALPAK® IA, CHIRALPAK® IB and CHIRALPAK® QD-AX

Acknowledgements

Dr. Tong Zhang

Dung Nguyen

All other colleagues at CHIRAL TECHNOLOGIES and DAICEL

CHIRAL TECHNOLOGIES EUROPE

Parc d'Innovation - Bd Gonthier d'Andernach - 67404 Illkirch Cedex - France

Tel: +33 (0)3 88 79 52 00 - fax: +33(0)3 88 66 71 66 www.chiral.fr - e-mail: cte@chiral.fr