

Structure-Guided Discovery of (S)-3-(aminomethyl)benzo[c][1,2]oxaborol-1(3H)-ol hydrochloride (ABX): A First in Class Gram-negative Antibacterial

Vincent Hernandez Senior Scientist, Medicinal Chemistry Anacor Pharmaceuticals, Inc. Palo Alto, CA, USA vhernandez@anacor.com

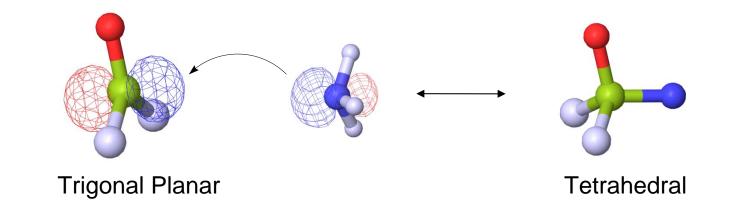
ABX

 NH_2

- Anacor Pharmaceuticals has a rich pipeline of boron-containing therapeutics in the clinic
- Boron is underexploited in medicinal chemistry and has tremendous potential in drug discovery
- ABX inhibits bacterial Leucyl tRNA synthetase and represents a new class of Gram-negative antibacterial agents
- This novel mechanism of action means ABX is not affected by existing modes of bacterial resistance
- ABX is efficacious *in vivo* against *E. coli* and *Pseudomonas* in mouse models of infection
- AN3365 has advanced to Phase I clinical development for the treatment of Gram-negative bacterial infections

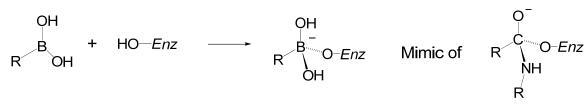
Anacor Has a Large Pipeline of Novel **Boron-containing Candidates**

Boron is Commonly Found in Our Environment

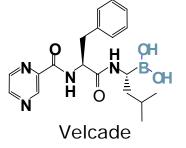


- In nature, boron is present as boric acid
- Boric acid is the main ingredient of Goop
 - Children's brightly colored toy, that they squeeze through their fingers
- Boric acid is used as a preservative in eye wash and vaginal creams
- Boric acid has an LD₅₀ similar to regular table salt (~3000 mg/kg)
- Boron is an essential plant nutrient
- We consume up to 4 mg of boron a day, primarily from fruits, vegetables and nuts
- At Anacor, we found background levels of 200 ng/mL of boron in mouse plasma

Boron has a Unique Bonding Orbital Configuration: An Empty P-Orbital



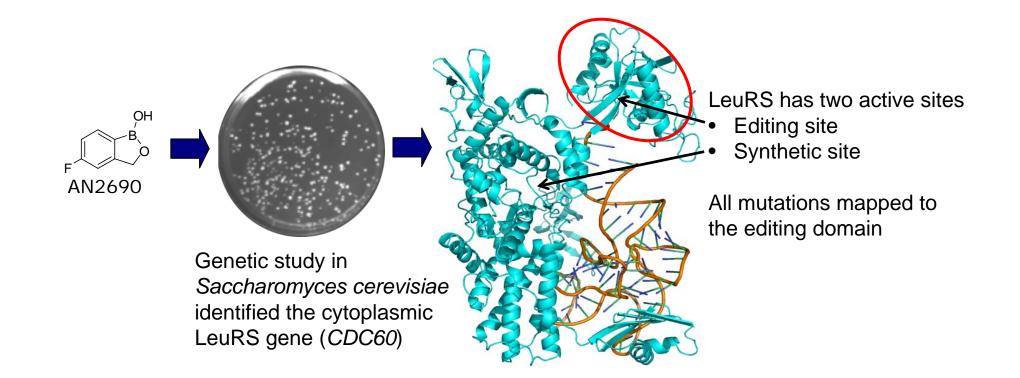
 Boron has an empty *p*-orbital & can form a dative bond under specific conditions


- The dative bond forms a tetrahedral structure
- Exploitation of *p*-orbital expands drug design possibilities

History and Overview of Organo-boron Drug Discovery Efforts

• Design of boronic acid protease inhibitors initiated in 1990s

- Multiple disease targets have been pursued
 - Thrombin
 - Factor Xa
 - Bacterial β-lactamases
 - HCV protease
 - DPP4
 - Arginase
- Only Velcade has reached FDA approval
- Lack of success despite substantial efforts attributed to poor drug-like properties of boronic acids

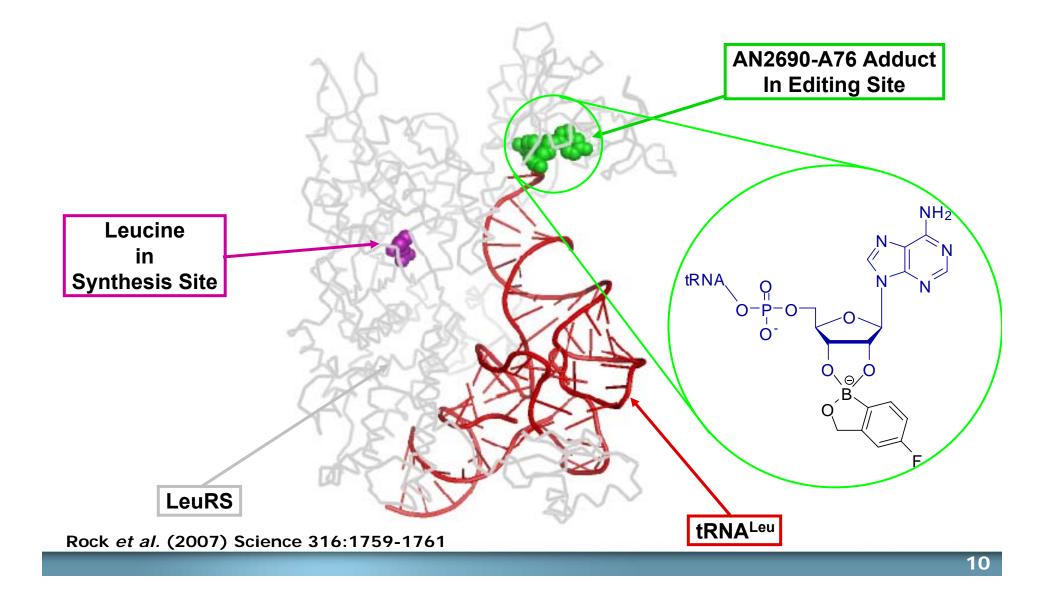

Minimum Inhibitory Concentration Against Fungal Pathogens (µg/mL)

AN2690	T. rubrum	T. mentagrophytes	C. albicans	C. neoformans	A. fumigatus
OH F	1	1	0.5	0.25	0.25

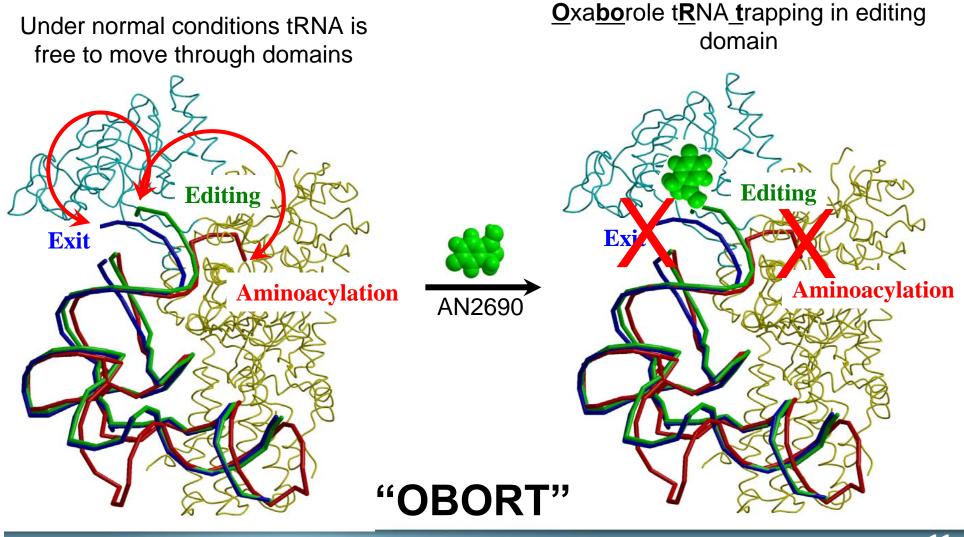
- AN2690 has shown good efficacy, safety and tolerability in Phase I and II clinical trials
- AN2690 is scheduled to begin Phase III

Antifungal Validated the LeuRS Editing Site as a Novel Drug Target

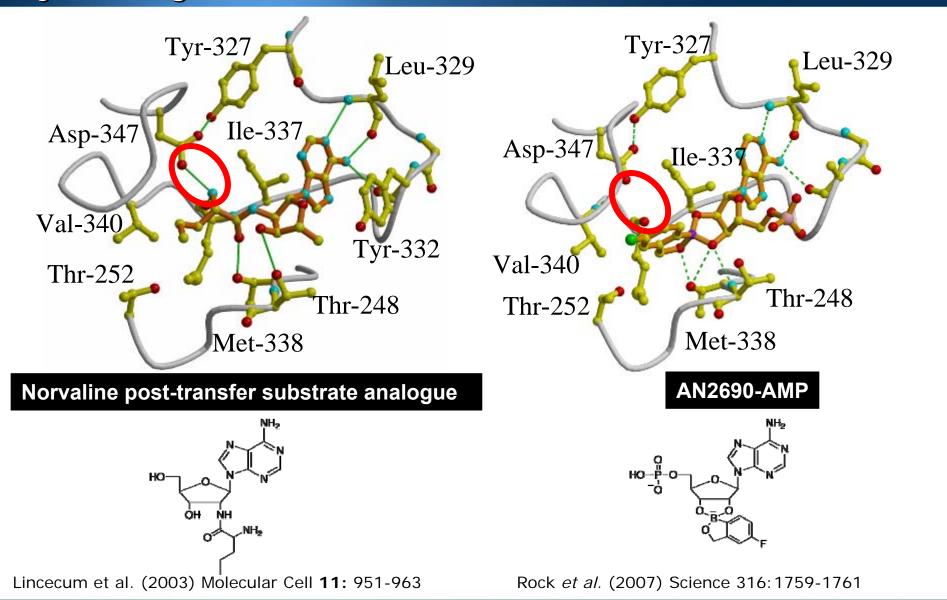
Rock et al. (2007) Science 316:1759-1761


The Target: Leucyl-tRNA Synthetase (LeuRS)

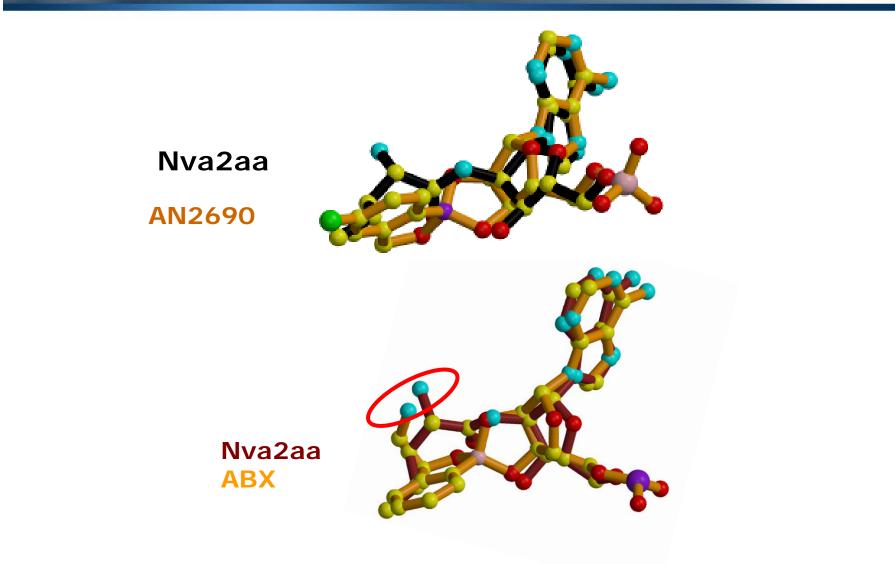
• Aminoacyl-tRNA synthetase


- Structurally related to isoleucyl-tRNA synthetase and valyltRNA synthetase
- Leucyl-tRNA synthetase attaches leucine to the 3' end of tRNA^{Leu}
- Essential enzyme in protein synthesis
- Enzyme has two active sites
 - Aminoacylation active site
 - Editing active site (proofreading)
- Editing activity ensures fidelity of protein synthesis
 - Editing mutants are supersensitive to leucine analogues, like norvaline

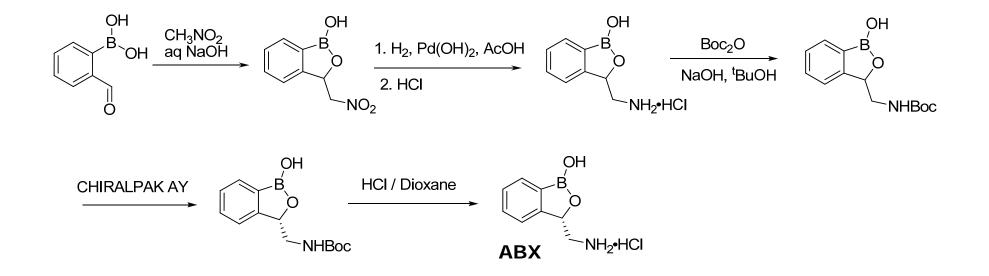
X-ray Structure Revealed A tRNA^{Leu} Adduct in the ANACOR Editing Site of Leucyl tRNA Synthetase

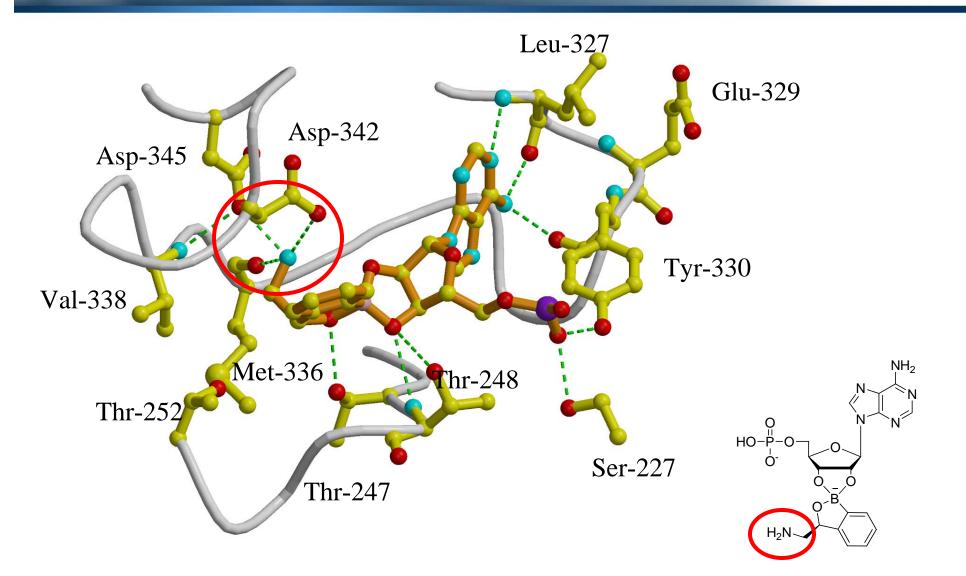


AN2690 Traps tRNA^{Leu} In The Editing Site Thus Inhibiting Aminoacylation And Editing



X-ray Structure of AN2690 in LeuRS Revealed ANACOR Key Binding Site was not Utilized


3-Aminomethyl Substitution was Added to Gain These Key H-bonds


Synthesis of ABX

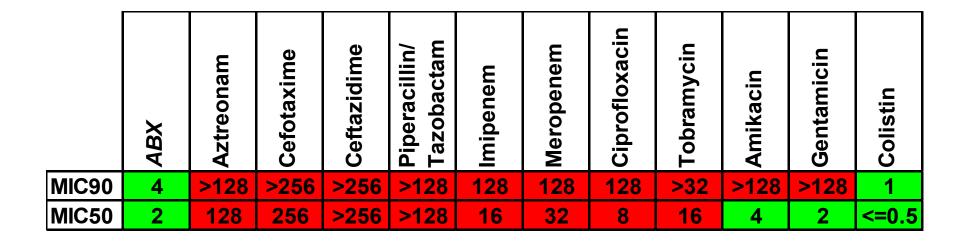
Aminomethyl Group of ABX Makes Three Hydrogen Bonds with LeuRS

Addition of Aminomethyl Group Provided Greatly Improved Inhibition For the S-Isomer

	IC ₅₀ *	(µM)	MIC (µg∕mL)				
Compound	E. coli	P. aeruginosa	E. coli K12	E. coli K12 tolC	P. aeruginosa ATCC 27853		
OH B O	27.5	22.3	16	16	>64		
ABX OH NH2	1.0	2.8	2	2	1		
OH B O NH ₂	48.0	>100	16	32	16		

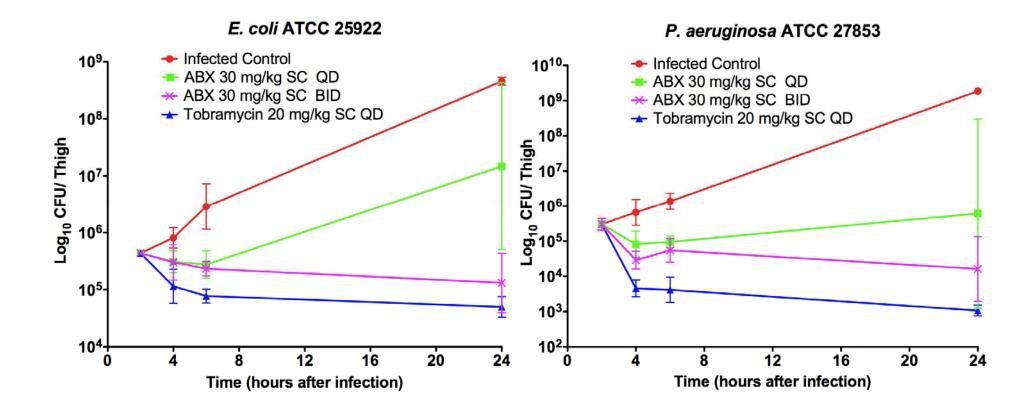
* IC_{50} determined after 20 minutes pre-incubation with enzyme and tRNA

Enzyme Kinetics Shows Slow Tight Binding Inhibition and Slow Off-Rate



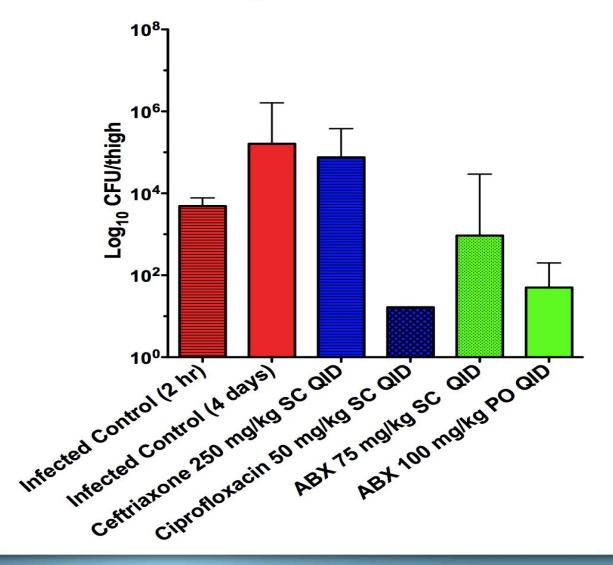
Compound	۲С ₅₀ (20 mins)	۲С ₅₀ (60 mins)	Enzyme Recovery (t½, hr)
OH B O	27.5 µM	26.3 µM	0.2
ABX OH O NH ₂	1.0 µM	0.4 µM	5.5

Gram-negative MIC₉₀ Panel Demonstrates Broad-spectrum Activity


Strain	No. of strains	ABX	Tigeccyline	Imipenem	Cefepime	Levofloxacin	Gentamycin	Ceftazidime	Piperacillin/ tazobactam	Amoxycillin/ clavulanate	Ampicillin
P. aeruginosa (WT)	50	1	16	1	8	2	4	16	32	>64	>64
P. aeruginosa (MbL-)	25	1	>16	32	>32	>16	>16	>32	>128	>64	>64
P. aeruginosa (MbL+)	26	1	>16	>64	>32	>16	>16	>32	>128	>64	>64
A. baumannii (WT)	25	>128	1	0.25	8	4	2	16	8	32	32
Acinetobacter spp. (MDR)	26	>128	8	64	>32	>16	>16	>32	>128	>64	>64
S. maltophilia (WT)	50	1	1	>64	>32	4	>16	>32	>128	>64	>64
B. cepacia	50	4	4	16	32	8	>16	16	32	>64	>64
E. coli (WT)	27	1	0.25	0.12	≤1	>16	2	≤1	8	32	>64
<i>E. coli</i> (ESBL)	25	2	0.25	0.25	>32	>16	>16	>32	128	64	>64
Klebsiella spp. (WT)	25	1	0.5	0.25	≤1	≤0.5	1	≤1	16	8	>64
Klebsiella spp. (ESBL)	15	1	2	1	>32	16	>16	>32	>128	64	>64
Klebsiella spp. (KPC)	10	2	1	>64	>32	>16	16	>32	>128	>64	>64
Enterobacter spp. (WT)	25	1	0.5	1	_≤1	≤0.5	≤0.5	2	8	>64	>64
Enterobacter spp. (AmpC)	26	1	4	0.5	8	>16	>16	>32	>128	>64	>64
Citrobacter spp. (WT)	36	1	0.5	1	≤1	1	>16	2	16	>64	>64
Citrobacter spp. (AmpC)	16	0.5	0.5	1	2	16	2	>32	128	>64	>64
<i>P. mirabilis</i> (WT)	42	128	4	2	≤1	2	2	≤1	0.5	8	>64
P. mirabilis (ESBL)	11	>128	4	2	>32	>16	>16	>32	4	64	>64
<i>P. vulgaris</i> (WT)	20	>128	2	2	≤1	≤0.5	1	≤1	0.5	16	>64
<i>M. morganii</i> (WT)	17	2	2	4	≤1	4	2	4	2	>64	>64
Indole positive Proteae	14	16	2	2	≤1	16	4	≤1	4	>64	>64
S. marcenscens (WT)	38	0.5	1	1	≤1	1	1	2	32	>64	>64
S. marcenscens (AmpC)	16	0.5	2	1	4	4	>16	>32	64	>64	>64

- Panel of 94 strains of MDR Enterobacteriaceae were tested by the Antibiotic Resistance Monitoring and Reference Laboratory, Health Protection Agency Centre for Infections
- ABX is not affected by existing modes of bacterial resistance

ABX Efficacy in a Neutropenic Mouse Thigh Infection model of *E. coli* and *P. aeruginosa*



Oral Efficacy in an Immuno-competent Mouse Thigh Infection Model

P. aeruginosa 1161927

Interspecies Pharmacokinetics of ABX Scales Well from Mouse to Monkey

	IV parameters							
Species	Dose (mg/kg)	Cmax (µg/mL) @ 5 min	CL (mL/hr/kg)	Vss (mL/kg)	Mean Retention Time (hr)	AUC (μg/mL*hr)		
Mouse	10	4.52	3510	2711	0.77	2.85		
Rat	10	3.15	3500	5130	1.4	3.68		
Dog	10	13	327	1499	4.6	31		
Monkey	15	15	339	2975	8.9	47		

- ABX is stable to incubation with liver microsomes and simulated gastric fluid
- ABX does not inhibit CYP450 enzymes
- Plasma protein binding range 4-13%
- Good oral bioavailability
 - -29% Rat
 - -100% Dog
 - -79% Monkey

Toxicology of ABX

- In vivo rat micronucleus study was negative
- In vitro mouse lymphoma was negative up to 2000 μg/mL
- ABX showed $IC_{50} \ge 10 \ \mu M$ for all receptors except $5HT_7$

– IC_{50} of $5HT_7$ is 1 $\mu M_{\text{,}}$ is neither an agonist or antagonist

- hERG IC₅₀ > 100 μM
- Not hemolytic at concentrations up to 45 mg/mL in rat RBC
- In the 7-day rat safety study no significant toxicity was observed up to 600 mg/Kg/d, IV

- ABX is the first member of a new class of boron-containing antibacterial agents
- ABX is a selective inhibitor of Leucyl tRNA synthetase and has broad spectrum activity against Gram Negative bacteria
- MIC₉₀ of ABX is 1-4 μg/mL against a panel of *Enterobacteriaceae* (276)

-With the exception of Proteae (MIC₉₀ >64 μ g/mL)

- ABX is not affected by pre-existing clinical resistance to established drug classes
- ABX is efficacious *in vivo* and is orally bioavailable
- ABX has good interspecies scaling from mouse to monkey
- ABX has a good safety profile and proved to be safe in repeat dose studies in rats at up to and including 600 mg/kg/d, IV
- AN3365 has advanced to Phase I clinical development

Acknowledgements

Anacor

Medicinal Chemistry Tsutomu Akama Jake Plattner Huchen Zhou Yong-Kang Zhang

<u>Pharmacology</u> Yvonne Freund Richard Kimura Holly Sexton

<u>Program Management</u> Steve Baker Kirk Maples Discovery Biology Dickon Alley Weimin Mao Fernando Rock

<u>Toxicology</u> Sanjay Chanda Chiao-Wen Chen Irwin Heyman

<u>DMPK</u> Wei Bu Liang Liu Xiao-Qing Fan EMBL Thibaut Crepin Stephen Cusack <u>GSK</u> Pete DeMarsh Nerissa Simon Neil Pearson

Chiral Technologies

Lisa Cole Elena Eksteen

Curragh Chemistries Jim Phillips

<u>Ricerca</u> Ann O'Leary

NAEJA

Jim Nieman

Maureen Kully

Rajeshwar Singh

Penn State

Steve Benkovic

UK Health Protection Agency

David Livermore Marina Warner <u>JMI</u> Rodr

Rodrigo Mendes Doug Biedenbach