

INSTRUCTION MANUAL FOR CHIRALPAK® IA, IB(N-5), IC, ID, IE, IF, IG, and CHIRALPAK IH

<Reverse Phase>

Please read this instruction sheet completely before using these columns

These columns can also be used in normal phase mode. Please refer to the corresponding instruction sheet for details.

Switching Between RP and NP Mode

To switch from reversed phase mode to normal phase mode, and vice versa, column should be carefully flushed with miscible solvent.

It is highly recommended to apply the **regeneration procedure** described in the instruction sheet for normal phase mode. Before applying this protocol, any traces of salts should be removed by flushing with a mobile phase that does not contain any salts / buffers.

Method Development / Reversed Phase

A - Mobile phases / For both UV and Mass detections

		ACIDIC (AMPHOTERIC) Compounds	NEUTRAL Compounds	BASIC Compounds @
CHIRALPAK® IA CHIRALPAK® ID CHIRALPAK® IE CHIRALPAK® IF CHIRALPAK® IG CHIRALPAK® IH	Aqueous solution •	HCOOH aq. pH 2.0	Water	20 mM NH₄HCO₃ aq. pH 9.0 adjusted with a basic additive 0
	Organic modifier	CH₃CN or MeOH or EtOH or IPA or THF		
CHIRALPAK® IB(N-5) CHIRALPAK® IC Typical startic conditions €		Aqueous solutions 60% CH₃CN 40% 9		

FNOTE 1: If you cannot achieve sufficient resolution, try the complementary aqueous solutions

B - Complementary aqueous and buffer solutions / For UV detection

		ACIDIC (AMPHOTERIC) Compounds	NEUTRAL Compounds	BASIC Compounds @
CHIRALPAK® IA CHIRALPAK® ID CHIRALPAK® IE CHIRALPAK® IF CHIRALPAK® IG	Aqueous solution 0	50 mM Phosphate Buffer pH 2.0	Water	20 mM Borate Buffer pH 9.0
		OR		OR
		H₃PO₄ aq. pH 2.0		20 mM Phosphate Buffer
CHIRALPAK® IH		OR		pH 8.0 ⊙
CHIRALPAK® IB(N-5) CHIRALPAK® IC		100 mM KPF ₆ (or NaPF ₆) aq.		OR
		pH 2.0 adjusted with H₃PO₄		100 mM KPF ₆ (or NaPF ₆) aq.

**NOTE 2: The concentration of all the buffering salt should be less than 500 mM.

- Refer to **section C** for preparation of aqueous solution and choice of basic additives.
- **9** □ It is recommended to use CH₃CN to start the investigation
 - The elution power of organic modifiers for these columns is in the descending order of $CH_3CN > EtOH > MeOH$: $50\%CH_3CN \approx 65-70\%EtOH \approx 75-80\%MeOH$.
 - □ The use of other organic solvents –except THF- has not been investigated and could be harmful to the columns.
 - \Box The use of alcohols causes the back pressure to be significantly higher compared to CH₃CN due to their high viscosity in mixtures with water.
- Retention can be adjusted by changing the proportion of CH₃CN. Retention may be very sensitive to the amount of CH₃CN present into the mobile phase.
 - □ Lowering the column temperature may increase the retention time and the selectivity.
 - Increasing the column temperature and decreasing the flow rate may increase the resolution.
- To maximize column life the use of a guard cartridge is essential when basic conditions are employed.
 - ☐ The use of strong basic conditions (> pH 9) must be avoided, as they are known to damage the silica gel matrix.
 - When these columns are used at pH > 7, the temperature should be maintained between 5°C and 25°C for maximum column life.
- High percentages of organic modifier in the mobile phase <u>may precipitate the buffering salt</u> from the solution, and lead to consequent clogging of the column (refer to the table below).

Water / Organic Modifier	Buffer solution / Organic Modifier
90 / 10 to 0 / 100	90 / 10 to 15 / 85

• Do not use the phosphate buffer for pH > 8. When pH 9 is necessary, use the ammonium bicarbonate solution or borate buffer for maximum column life.

C – Buffer preparation – Examples

Preparation of pH 2 Phosphate buffer:

Solution A: 50 mM potassium dihydrogenphosphate

 $3.40g\ KH_2PO_4$ / FW 136.09, make up the volume to 500ml with HPLC grade water

Solution B: phosphoric acid (H₃PO₄ 85% by weight)

Adjust the pH of solution A to a value of 2.0 using solution B.

Preparation of pH 2 KPF₆ (NaPF₆) solution:

Solution A: 100 mM potassium (sodium) hexafluorophosphate

 $9.20g~KPF_6$ / FW $184.06~or~8.40g~NaPF_6$ / FW 167.95, make up the volume to 500~ml~with~HPLC~grade~water

Solution B: phosphoric acid (H₃PO₄ 85% by weight)

Adjust the pH of solution A to a value of 2.0 using solution B.

Preparation of pH 9 Ammonium bicarbonate solution:

Solution A: 20 mM ammonium bicarbonate

0.78g NH₄HCO₃ / FW 78.05, make up the volume to 500 ml with HPLC grade water

Solution B Basic additive such as diethylamine (DEA), triethylamine (TEA), ammonia (NH₃) and so on.

* DEA tends to give better peak shape than other bases.

Adjust the pH of solution A to a value of 9.0 using solution B.

Preparation of pH 8 Phosphate buffer:

Solution A: 20 mM potassium hydrogenophosphate

1.74g of K₂HPO₄ / FW 174.18, make up the volume to 500 ml with HPLC grade water

20 mM potassium dihydrogenophosphate Solution B:

 $1.36g\ KH_2PO_4$ / FW 136.09, make up the volume to 500 ml with HPLC grade water.

Adjust the pH of solution A to a value of 8.0 using solution B.

Preparation of pH 9 Borate buffer:

Solution A: 20 mM sodium tetraborate decahydrate

3.81g of $Na_2B_4O_7.10H_2O$ / FW $38\dot{1}.37$, make up the volume to 500 ml with HPLC grade water

Solution B: 20 mM boric acid

 $0.62g\ H_3BO_3$ / FW 61.83, make up the volume to 500 ml with HPLC grade water

Adjust the pH of solution A to a value of 9.0 using solution B.

Column Care **Maintenance**

Any traces of salts should be removed before column storage and /or before switching to 100% organic solvent (use Water/CH₃CN 60:40 (v/v) for instance)

Refer main instruction for normal phase and column care/maintenance.