Automated sample preparation with 6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate and iodoacetamide derivatization reagents for enantioselective liquid chromatography tandem mass spectrometry amino acid analysis, F. Li, R. Karongo, D. Mavridou, J. Horak, A. Sievers-Engler, M. Lämmerhofer, J. Chromatogr. A., 1708, (2023)

Development of a cognitive function marker based on D-amino acid proportions using new chiral tandem LC-MS/MS systems, R. Kimura, H. Tsujimura, M. Tsuchiya, S. Soga, N. Ota, A. Tanaka, H. Kim, Sci Rep, 10, 804, (2020)

Ultratrace analysis of enantiomeric impurities in proteinogenic N-Fmoc-amino acid samples on Cinchona alkaloid-based chiral stationary phases, A. Péter, N. Grecsó, G. Tóth, F. Fülöp, W. Lindner, I. Ilisz, Israel Journal of Chemistry 56 (2016) 1042-1051

Improved chromatographic diastereoresolution of cyclopropyl dafachronic acid derivatives using chiral anion exchangers, F. Ianni, L. Pucciarini, A. Carotti, A. Gioiello, R. Galarini, S. Natalini, R. Sardella, W. Lindner, B. Natalini, J. Chromatogr. A., 1557, (2018) 20–27

Chiral separation of disease biomarkers with 2-hydroxycarboxylic acid structure, C. Calderón, C. Santi, M. Lämmerhofer, J. Sep. Sci., (2017), 1-8

Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for HPLC based on cinchonan carbamates and their application as chiral anion exchangers, M. Lämmerhofer, W. Lindner, J. Chromatogr. A, 741 (1996) 33-48

Chiral anion exchange-type stationary phases based on cinchonan alkaloids. An effective tool for the separation of enantiomers of chiral acids, M. Lämmerhofer, N. M. Maier, W. Lindner, ChemInform, 29 (1998)

Quinine- versus carbamoylated quinine-based chiral anion exchangers: A comparison regarding enantioselectivity for N-protected amino acids and other chiral acids, A. Mandl, L. Nicoletti, M. Lämmerhofer, W. Lindner, J. Chromatogr. A, 858 (1996) 1-11

Enantioseparation of various amino acid derivatives on a quinine based chiral anion-exchange selector at variable temperature conditions. Influence of structural parameters of the analytes on the apparent retention and enantioseparation characteristics, W. R. Oberleitner, N. M. Maier, W. Lindner, J. Chromatogr. A, 960 (2002) 97-108

Use of evaporative light scattering detector in the detection and quantification of enantiomeric mixtures by HPLC, T. Zhang, D. Nguyen, P. Franco, J. Sep. Sci., 29 (2006) 1517-1524

Kinetic resolution of glyceraldehyde using an aldehyde dehydrogenase from Deinococcus geothermalis DSM 11300 combined with electrochemical cofactor recycling, H. Wulf, M. Perzborn, G. Sievers, F. Scholz, U.T. Bornscheuer, Journal of Molecular Catalysis B: Enzymatic, 74 (2012) 144-150

Enantiomer and topoisomer separation of acidic compounds on anion-exchanger chiral stationary phases by HPLC and SFC, P. Franco, T. Zhang, A. Gargano, M. Mahut, M. Lämmerhofer, W. Lindner, LCGC Europe, 25 (2012) 600-611

Potential of chiral anion-exchangers operated in various subcritical fluid chromatography modes for resolution of chiral acids, R. Pell, W. Lindner, J. Chromatogr. A, 1245 (2012) 175-182

Phosphopeptidomimetic substance libraries from multicomponent reaction: Enantioseparation on quinidine carbamate stationary phase, A. F. G. Gargano, W. Lindner, M. Lämmerhofer, J. Chromatogr. A, 1310 (2013) 56– 65

Simultaneous diastereo- and enantioseparation of farnesoid X receptor (FXR) agonists with a quinine carbamate-based chiral stationary phase, R. Sardella, M. Marinozzi, F. Iammi, A. Lisanti, B. Natalini, Anal. Bioanal. Chem., 405 (2013) 847-862

2-Acyl-dimedones as UV-active protective agents for chiral amino acids: enantiomer separations of the derivatives on chiral anion exchangers, S. Wernisch, F. Bisi, A. S. Cazzato, M. Kohout, W. Lindner, Anal. Bioanal. Chem., 405 (2013) 8011–8026

Enantioselective high-performance liquid chromatographic separation of fluorinated ß- phenylalanine derivatives utilizing Cinchona alkaloid-based ion-exchanger chiral stationary phases: Enantioselective separation of fluorinated ß-phenylalanine derivatives, G. Németi, R. Berkecz, S. Shahmohammadi, E. Forró, W. Lindner, A. Péter, I. Ilisz, J. Chromatogr. A, 1670, (2022)

Electrostatic attraction-repulsion model with Cinchona alkaloid-based zwitterionic chiral stationary phases exemplified for zwitterionic analytes, V. Mimini, F. Ianni, F. Marini, H. Hettegger, R. Sardella, W. LindneraAnalytica Chimica Acta, 1078, (2019), 212-220

Fragment-based Design of Zwitterionic, Strong Cation and Weak Anion-Exchange Type Mixed-mode Liquid Chromatography Ligands and their Chromatographic Exploration, M. Ferri, S. Bäurer, A. Carotti, M. Wolter, B. Alshaar, J. Theiner, T. Ikegami, C. West, M. Lämmerhof, J. Chromatogr. A, 1621, (2020)

Cinchona -based zwitterionic stationary phases: Exploring retention and enantioseparation mechanisms in supercritical fluid chromatography with a fragmentation approach, A. Raimbault, C. Mai Anh Ma, M. Ferri, S. Bäurer, P. Bonnet, S. Bourg, M. Lämmerhofer, C. West, J. Chromatogr. A, (2019)

Development of a cognitive function marker based on D-amino acid proportions using new chiral tandem LC-MS/MS systems, R. Kimura, H. Tsujimura, M. Tsuchiya, S. Soga, N. Ota, A. Tanaka, H. Kim, Sci Rep, 10, 804, (2020)

Effects of N-methylation and amidination of cyclic ß-amino acids on enantioselectivity and retention characteristics using Cinchona alkaloid- and sulfonic acid-based chiral zwitterionic stationary phases, T. Orosz, E. Forró, F. Fülöp, W. Lindner, I. Ilisz, A. Péter, J. Chromatogr. A, 1535 (2018) 72-79

Electrostatic attraction-repulsion model with Cinchona alkaloid-based zwitterionic chiral stationary phases exemplified for zwitterionic analytes, V. Mimini, F. Ianni, F. Marini, H. Hettegger, R. Sardella, W. Lindner, Analytica Chimica Acta, (2019)

A chiral unified chromatography-mass spectrometry method to analyze free amino acids, A. Raimbault, M. Dorebska, C. West, Analytical and Bioanalytical Chemistry, (2019), 1-9

Stereoselective separation of underivatized and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatized amino acids using zwitterionic quinine and quinidine type stationary phases by liquid chromatography–High resolution mass spectrometry, J. Horak, M. Lämmerhofer, J. Chromatogr. A, (2019)

Direct Separation of Pregabalin Enantiomers Using a Zwitterionic Chiral Selector by High Performance Liquid Chromatography Coupled to Mass Spectrometry and Ultraviolet DetectionL. Narayana Chennuru, T. ChoppariR. Prasad Nandula, T. Zhang and P. Franco, Molecules21(11), 2016, 1578

Exploring the enantiorecognition mechanism of Cinchona alkaloid-based zwitterionic chiral stationary phases and the basic trans-paroxetine enantiomers, R. Sardella, A. Macchiarulo, F. Urbinati, F. Ianni, A. Carotti, M. Kohout, W. Lindner, A. Peter, I. Ilisz, J. Sep. Sci., (2017)

Liquid  chromatographic  enantioseparation  of  limonene-based  carbocyclic  β-amino acids on zwitterionic Cinchona alkaloid based chiral stationary phases, G. Lajkó, T. Orosz, I. Ugrai, Z. Szakonyi. F. Fülöp, W. Lindner, A. Péter, I. Ilisz, J. Sep. Sci., 40, (2017), 3196-3204

A comparative study for the liquid chromatographic enantioseparation of cyclic β-amino acids and cyclic β-aminohydroxamic acids on Cinchona alkaloid-based zwitterionic chiral stationary phases, A. Bajtai, B. Fekete, M. Palkó, F. Fülöp, W. Lindner, M. Kohout, I. Ilisz, A. Péter, J. Sep. Sci., (2018), 1216-1223

Liquid and subcritical fluid chromatographic enantioseparation of N-Fmoc proteinogenic amino acids on Quinidine-based zwitterionic and anion-exchanger type chiral stationary phases. A comparative study, G. Lajkó, N. Grecsó, G.  TóthF. Fülöp, W. Lindner, A. Péter, I. Ilisz, Chirality, 29 (2017), 225-238

Peptide Analysis: Zwitterionic Chiral Ion-Exchangers as Complementary Option to HILIC and to Reversed-Phase Chromatography, T. Zhang, E. Holder, P. Franco, M. Lämmerhofer, A. Sievers-Engler, H. Gerhardt, H. Gross, W. Lindner, LCGC Europe, 29 (2016) 112-128

Method development for the determination of d- and l-isomers of leucine in human plasma by high-performance liquid chromatography tandem mass spectrometry and its application to animal plasma samples, H. Sugimoto, M. Kakehi, F. Jinno, Anal. Bioanal. Chem., 407 (2015) 7889-7898

Unusual temperature-induced retention behavior of constrained β-amino acid enantiomers on the zwitterionic chiral stationary phases ZWIX(+) and ZWIX(-), I. Ilisz, Z. Pataj, Z. Gecse, Z. Szakonyi, F. Fülöp, W. Lindner, A. Péter, Chirality, 26 (2014) 385-93

Structural and temperature effects on enantiomer separations of bicyclo[2.2.2]octane-based 3-amino-2-carboxylic acids on cinchona alkaloid-based zwitterionic chiral stationary phases, I. Ilisz, N. Grecsó, M. Palkó, F. Fülöp, W. Lindner, A. Péter, J. Pharm. Biomed. Anal., 98 (2014) 130-139

Effect of mobile phase composition on the liquid chromatographic enantioseparation of bulky monoterpene-based β-amino acids by applying chiral stationary phases based on Cinchona alkaloid, Z. Pataj, I. Ilisz, Z. Gecse, Z. Szakonyi, F. Fülöp, W. Lindner, A. Péter, J. Sep. Sci., 37 (2014) 1075-1082

Liquid chromatographic enantiomer separation with special focus on zwitterionic chiral ion-exchangers, M. Lämmerhofer, Anal. Bioanal. Chem., 406 (2014) 6095-6103

Simultaneous quantification of mefloquine (+)- and (-)- enantiomers and the carboxy metabolite in dried blood spots by liquid chromatography/tandem mass spectrometry, M. C.K. Geditz, W. Lindner, M. Lämmerhofer, G. Heinkele, R. Kerb, M. Ramharter, M. Schwab, U. Hofmann, J. Chromatogr. B, 968 (2014) 32–39

Direct high-performance liquid chromatographic enantioseparation of secondary amino acids on Cinchona alkaloid-based chiral zwitterionic stationary phases. Unusual temperature behavior, I. Ilisz, Z. Gecsea, Z. Pataja, F. Fülöpb, G. Tóthc, W. Lindner, A. Péter, J. Chromatogr. A, 1363 (2014) 169-177

Direct enantioseparation of underivatized aliphatic 3-hydroxyalkanoic acids with a quinine-based zwitterionic chiral stationary phase, F. Ianni, Z. Pataj, H. Gross, R. Sardella, B. Natalini, W. Lindner, M. Lämmerhofer, J. Chromatogr. A, 1363 (2014) 101-108

Zwitterionic chiral stationary phases based in cinchona and chiral sulfonic acids for the direct stereoselective separation of amino acids and other amphoteric compounds, T. Zhang, E. Holder, P. Franco, W. Lindner, J. Sep. Sci., 37 (2014) 1237-1247

Method development and optimization on cinchona and chiral sulfonic acid-based zwitterionic stationary phases for enantiomer separations of free amino acids by high-performance liquid chromatography, T. Zhang, E. Holder, P. Franco, W. Lindner, J. Chromatogr. A, 1363 (2014) 191-199

Direct high-performance liquid chromatographic enantioseparation of free α-, β- and γ-aminophosphonic acids employing cinchona-based chiral zwitterionic ion exchangers, A. F. G. Gargano, M. Kohout, P. Macikova, M. Lämmerhofer, W. Lindner, Anal. Bioanal. Chem., 405 (2013) 8027–8038

Enantioselective recognition at mesoporous chiral metal surfaces, C. Wattanakit, Y. Bon Saint Côme, V. Lapeyre, P. A. Bopp, M. Heim, S. Yadnum, S. Nokbin, C. Warakulwit, J. Limtrakul, A. Kuhn, Nat. Commun., 5, 3325 (2014)

Stationary phase-related Investigations of quinine-based zwitterionic chiral stationary phases operated in anion-, cation-, and zwitterion-exchange modes, C. Hoffmann, R. Reischl, N. M. Maier, M. Lämmerhofer, W. Lindner, J. Chromatogr. A, 1216 (2009) 1147-1156

Investigations of mobile phase contributions to enantioselective anion and zwitterion exchange modes on quinine-based zwitterionic chiral stationary phases, C. Hoffmann, R. Reischl, N. M. Maier, M. Lämmerhofer, W. Lindner. J. Chromatogr. A, 1216 (2009) 1157-1166

Synergistic effects on enantioselectivity of novel zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC, C. Hoffmann, R. Pell, M. Lämmerhofer, W. Lindner, Anal. Chem., 80 (2008) 8780-8789

Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases and ampholytes using cinchona-based zwitterion exchanger chiral stationary phases, S. Wernisch, R. Pell, W. Lindner, J. Sep. Sci., 3 (2012) 1560-1572

Diastereoselective discrimination of lysine-alanine peptides by zwitterionic cinchona alkaloid-based chiral selectors using electrospray ionization mass spectrometry, J. M. Bobbitt, L. Li, D. D. Carlton, M. Yasin, S. Bhawal, F. W. Foss, S. Wernisch, R. Pell, W. Lindner, K. A. Schug, J. Chromatogr. A, 1269 (2012) 308-315

Versatility of cinchona-based zwitterionic chiral stationary phases: Enantiomer and diastereomer separations of non-protected oligopeptides utilizing a multi-modal chiral recognition mechanism, S. Wernisch, W. Lindner, J. Chromatogr. A, 1269 (2012) 297-307

Mechanistic investigations of cinchona alkaloid-based zwitterionic chiral stationary phases, R. Pell, S. Sic, W. Lindner, J. Chromatogr. A, 1269 (2012) 287-296

Enantioseparation of 6-aminoquinolyl-n-hydroxysuccinimidyl carbamate tagged amino acids and other zwitterionic compounds on cinchona-based chiral stationary phases, R. Hellinger, J. Horak, W. Lindner, Anal. Bioanal. Chem., 405 (2013) 8105-8120

Application of cinchona-sulfonate-based chiral zwitterionic ion exchangers for the separation of proline-containing dipeptide rotamers and determination of on-column isomerization parameters from dynamic elution profiles, S. Wernisch, O. Trapp, W. Lindner, Anal.Chim Acta, 795 (2013) 88-98

Enantioseparation of β2-amino acids on cinchona alkaloid-based zwitterionic chiral stationary phases. Structural and temperature effects, I. Ilisz, N. Grecsó, A. Aranyi, P. Suchotin, D. Tymecka, B. Wilenska, A. Misicka, F. Fülöp, W. Lindner, A. Péter, J. Chromatogr. A, 1334 (2014) 44-54

Automated and simultaneous two-dimensional micro-high-performance liquid chromatographic determination of proline and hydroxyproline enantiomers in mammals, Y. Tojo, K. Hamase, M. Nakata, A. Morikawa, M. Mita, Y. Ashida, W. Lindner, K. Zaitsu, J. Chromatogr. B, 875 (2008) 174-179

Simultaneous determination of d-aspartic acid and d-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure, H. Han, Y. Miyoshi, K. Ueno, C. Okamura, Y. Tojo, M. Mita, W. Lindner, K. Zaitsu, K. Hamase, J. Chromatogr. B, 879 (2011) 3196-3202

Enantioselective two-dimensional high-performance liquid chromatographic determination of n-methyl-d-aspartic acid and its analogues in mammals and bivalves, R. Koga, Y. Miyoshi, E. Negishi, T. Kaneko, M. Mita, W. Lindner, K. Hamase, J. Chromatogr. A, 1269 (2012) 255-261

Ion-pair-free RPLC-MS of synthetic oligonucleotides: Impurity analysis of siRNA with a polybutylene terephthalate-based column, F. Li, S. Chen, Dr. S. Studzińska, Prof. Dr. M. Lämmerhofer, chrom+food, FORUM 06 (2023)

Polybutylene terephthalate-based stationary phase for ion-pair-free reversed-phase liquid chromatography of small interfering RNA. Part 2: Use for selective comprehensive two-dimensional liquid chromatography, F. Li, S. Chen, S. Studzińska, M. Lämmerhofer, J. ChromatogrA, (2023)

Polybutylene terephthalate-based stationary phase for ion-pair-free reversed-phase liquid chromatography-mass spectrometry of small interfering RNA, Part 1, F. Li, S. Chen, S. Studzińska, M. Lämmerhofer, J. ChromatogrA, (2023)

Comparison of Supercritical Fluid Chromatography Hyphenated to an Ultraviolet Detector and Gas Chromatography Hyphenated to a Flame Ionization Detector for Qualitative and Quantitative Analysis of Citrus Essential Oils, C. Santerre, E. Delannay, P. Franco, N. Vallet, D. Touboul, Separations 9, 183, (2022)

Application of supercritical fluid chromatography for separation and quantitation of 15 co-formulated binary anti-hypertensive medications using a single elution protocol, P. Pandya, P. Shah, P. Shrivasta, Biomedical Chromatography, (2020)

Facile separation of four co-formulated ternary antihypertensive drug combinations with a customized elution protocol using supercritical fluid chromatography, P. Pandya, P. Shah, P. Shrivasta, Microchemical Journal, 159 (2020)

Separation of carbohydrate isomers and anomers on poly-N-(1H-tetrazole-5-yl)-methacrylamide-bonded stationary phase by hydrophilic interaction chromatography as well as determination of anomer interconversion energy barriers, X. Fu, M. Cebo, T. Ikegami, M. Lämmerhofer, J. ChromatogrA, 1620 (2020) 460981

Retention characteristics of poly(N-(1H-tetrazole-5-yl)-methacrylamide)-bonded stationary phase in hydrophilic interaction chromatography, X. Fu, M. Cebo, T. Ikegami, M. Lämmerhofer, J. ChromatogrA, 1609 (2020) 460500

High-performance liquid chromatographic separation of 8-aminopyrene-1,3,6-trisulfonic acid labeled N-glycans using a functional tetrazole hydrophilic interaction liquid chromatography column, S. Yamamoto, M. Kinoshita, T. Ikegami, S. Suzuki,  J. ChromatogrA, 1566 (2018) 44-50

1H-Tetrazole-5-amine Immobilized on Substituted Polymer Gel/Silica as a New Stationary Phase for Hydrophilic Interaction Chromatography, M. Douša, Chromatographia, 81 (2018) 349-357

Chaotropic Effects in Sub/Supercritical Fluid Chromatography via Ammonium Hydroxide in Water-Rich Modifiers: Enabling Separation of Peptides and Highly Polar Pharmaceuticals at the Preparative Scale, J. Liu, A. A. Makarov, R. Bennett, I. A. H. Ahmad, J. DaSilva, M. Reibarkh, I. Mangion, B. F. Mann, E. L. Regalado, Anal Chem., 91 (2019) 13907-13915

Characterization of Novel Polymer-Based Pyridine Stationary Phases for Supercritical Fluid Chromatography, C. West, E. Lemasson, K. Nagai, T. Shibata, P. Franco, S. Bertin, P. Henning, E. Lesellier, Chromatographia, 82 (2019) 143-152

Poly(4-vinylpyridine) based novel stationary phase investigated under supercritical fluid chromatography conditions, K. Nagai, T. Shibata, S. Shinkura, A. Ohnishi, J. ChromatogrA, 1572 (2018) 119-127

Polymeric stationary phases based on poly(butylene terephthalate) and poly(4-vinylpirydine) in the analysis of polyphenols using supercritical fluid chromatography. Application to bee pollen, L. Toribio, S. Arranz, A. M. Ares, J. Bernal, J. ChromatogrA, 1572 (2018) 128-136

Poly(butylene terephthalate) based novel achiral stationary phase investigated under supercritical fluid chromatography conditions, K. Nagai, T. Shibata, S. Shinkura, A. Ohnishi, J. ChromatogrA, 1549 (2018) 85-92

Retention characteristics of poly( N -(1 H -tetrazole-5-yl)-methacrylamide)-bonded stationary phase in hydrophilic interaction chromatography, X. Fu, M. Cebo, T. Ikegami, M. Lämmerho, J. Chromatogr. A, (2019)

Separation of carbohydrate isomers and anomers on poly- N -(1 H -tetrazole-5-yl)-methacrylamide-bonded stationary phase by hydrophilic interaction chromatography as well as determination of anomer interconversion energy barriers, X. Fu, M. Cebo, T. Ikegami, M. Lämmerhof, J. Chromatogr. A, (2020)

Chaotropic Effects in Sub/Supercritical Fluid Chromatography via Ammonium Hydroxide in Water-Rich Modifiers: Enabling Separation of Peptides and Highly Polar Pharmaceuticals at the Preparative
Scale, J. Liu, A. Makarov, R. Bennett, I. Haidar Ahmad, J. DaSilva, M. Reibarkh, I. Mangion, B. Mann, E. Regalado, Analytical Chemistry, (2019)

State-of-the-art enantioseparations of natural and unnatural amino acids by high-performance liquid chromatography, I. Ilisz, A. Péter, W. Lindner, Trends in Analytical Chemistry, 81 (2016), 11-22

On-line coupling of achiral Reversed Phase Liquid Chromatography and chiral Supercritical Fluid Chromatography for the analysis of pharmaceutical compounds, M. Iguiniz, E. Corbel, N. Roques, S. Heinisch, J. Pharm. Biomed. Anal, 159, (2018), 237-244

Characterization of Novel Polymer-Based Pyridine Stationary Phases for Supercritical Fluid Chromatography, C. West, E. Lemasson, K. Nagai, T. Shibata, P. Franco, S. Bertin, P. Hennig, E. Lesellier, Chromatographia, (2018), 1-10

Poly(4-vinylpyridine) based novel stationary phase investigated under supercritical fluid chromatography conditions, K. Nagai, T. Shibata, S. Shinkura, A. Ohnishi, J. Chromatogr. A., (2018)

Polymeric stationary phases based on poly(butylene terephthalate) and poly(4-vinylpirydine) in the analysis of polyphenols using supercritical fluid chromatography. Application to bee pollen, L. Toribio, S. Arranz, A. Ares,  J. Bernal, J. Chromatogr. A, (2018)

Poly(butylene terephthalate) based novel achiral stationary phase investigated under supercritical fluid   chromatography conditions, K. Nagai, T. Shibata, S. Shinkura, A. Ohnishi, J. Sep. Sci., (2018)